
JOURNAL OF COMPUTATIONAL PHYSICS 81, 421443 (1989) 

An Adaptive Pseudo-Spectral Method 
for Reaction Diffusion Problems* 

A. BAYLISS 

Department of Engineering Sciences and Applied Mathematics, 
Northwestern University, Evanston, Illinois 60208 

D. GOTTLIEB 

Division of Applied Mathematics, Box F, Brown University, 
Providence, Rhode Island 02912 

B. J. MATKOWSKY 

Department of Engineering Sciences and Applied Mathematics, 
Northwestern University, Evanston, Illinois 60208 

AND 

M. MINKOFF 

Mathematics and Computer Science Division, Argonne National Laboratory, 
Argonne, Illinois 60439 

Received October 5, 1987; revised April 12, 1988 

We consider the spectral interpolation error for both Chebyshev pseudo-spectral and 
Galerkin approximations. We develop a family of functionals I,(u), with the property that the 
maximum norm of the error is bounded by I,(u)/J’, where r is an integer and J is the degree 
of the polynomial approximation. These functionals are used in an adaptive procedure 
whereby the problem is dynamically transformed to minimize I,(u). The number of collocation 
points is then chosen to maintain a prescribed error bound. The method is illustrated by 
various examples from combustion problems in one and two dimensions. 0 1989 Academic 

Press, Inc. 

* Research was supported in part by the National Aeronautics and Space Administration under 
NASA Contract NASl-18107 while the first and second authors were in residence at the Institute for 
Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, 
Hampton, VA 23665, by the Applied Mathematical Sciences subprogram of the OlXce of Energy 
Research, U.S. Dept. of Energy under Contract W-31-109-ENG-38 and Grant DEFGO2-87ER-25027, 
by NSF Grant DMS-8701543, by AFOSR Grant AF-85-0303, and by DARPA URI contract 
NOOOl486KO754. 

421 
0021-9991/89 $3.00 

581/81/2-13 
Copyright 0 1989 by Academic Press, Inc. 

All rights of reproduction in any fomi mszrved. 



422 BAYLISS ET AL. 

I. INTRODUCTION 

The objective of this paper is to describe an adaptive pseudo-spectral method for 
solving systems of reaction, diffusion, convection equations. We introduce a family 
of functionals which appear to accurately estimate the spectral interpolation error. 
These functionals are used in an adaptive procedure in which the equations are 
transformed into a coordinate system in which the functional is minimized. The 
number of collocation points is dynamically modified to maintain a constant error 
bound. 

In [ 11, an adaptive procedure was introduced in which a coordinate transforma- 
tion was chosen to minimize the weighted second Sobolev norm of the solution. A 
similar adaptive procedure was presented in [7]. Our numerical computations 
indicate that the new functionals introduced here provide a considerably sharper 
error estimate and thereby permit a more efficient solution of the differential 
equations. 

The numerical procedure is illustrated with examples of unsteady axisymmetric 
as well as steady non-axisymmetric flames occurring in gaseous combustion. This 
problem is described by the diffusional thermal model in which the thermal expan- 
sion of the gas is neglected [lo]. We further simplify by assuming that the reaction 
is controlled by a single deficient component, so that only one species needs to be 
accounted for, and assume global one step Arrhenius kinetics. Thus the model con- 
sists of a system of reaction, diffusion, convection equations for the temperature, 
and the concentration of the deficient component which limits the reaction. 

Because of the reaction term, the system has an exponential nonlinearity. 
Spurious numerical oscillations can seriously degrade the accuracy of the computed 
solution, primarily through the exponentially nonlinear reaction term. Generally, 
the reaction term is important only in a narrow region, the reaction zone, in which 
the solution exhibits rapid changes. The Chebyshev pseudo-spectral method is sub- 
ject to oscillations in regions of large gradients [6]. We have found that the adap- 
tive procedure described here can be effective in reducing these oscillations. An 
adaptive procedure for a finite difference solution of problems of this type is given 
in [12]. 

This paper is organized as follows. In Section 2, we describe a specific model and 
illustrate the features of the solution which make its numerical computation dif- 
ficult. In Section 3, we describe the adaptive procedure, and in Section 4 we describe 
the new functionals which are used to estimate the error. In Section 5, we illustrate 
the effectiveness of the procedure with examples from the model problem described 
in Section 2. 

II. PROBLEM DESCRIPTION 

To illustrate the behavior of the solution in typical combustion problems, we 
study the following problem for a flame stabilized by a line source of fuel. We 
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consider the nondimensional reaction, diffusion, convection system for the reduced 
temperature 8 = (T - T,)/( Tb - T,) and reactant concentration C, where T,, and Tb 
represent the temperature in the unburned fresh mixture at the source and the 
burned temperature at infinity, respectively. In polar coordinates r and 9, the 
nondimensional equations are 

lcQ 
@,=A@-z+ 

CP(l-a) 
r 2L 

exp(N(l-a)(@-l)/(a+(l-a)@)) 

c _ AC KC, CN*(l -a)* 
(2.1) 

I L r 2L 
exp(N(l-a)(@-l)/(o+(l-a)@)). 

Here G = T,,/T,, A is the Laplacian, N is the non-dimensional activation energy, 
and the terms on the right side of (2.1), respectively, represent diffusion, convection, 
and a global one-step Arrhenius reaction. The boundary conditions are given by 

Q=O, c= 1 for r=O; O-1, c+o for r-co. (2.2) 

The parameters in (2.1) are the Lewis number, L, the strength K of the source of 
fuel, N, and cr. To limit the size of the computational domain, we impose the 
boundary conditions at fixed points r 1, r2, rather than at 0 and co. We have verified 
that the solutions of the problems presented here are insensitive to the positions of 
the artificial boundaries. 

The system (2.1~(2.2) was analyzed in [9]. It was shown that in the limit 
M = N( 1 - cr) --) co there exists an axisymmetric solution of the form 

“=(;)‘+o($) 

C=(l-@)+O $. 
0 

(2.3) 

Furthermore, there exists a critical value of L, L,, c 1, such that for L < L,, the 
solution (2.3) is unstable to angular perturbations, and arbitrary initial data close 
to (2.3) evolve into stationary cells. Computations of such cells are presented in 
c2, 31. 

Another regime of diffusional thermal instabilities occurs for values of L > 1. 
Based on the analysis in [S], there exists another critical value of L, L,, > 1, such 
that for L > L,, the solution (2.3) loses its stability to a time oscillatory solution via 
a Hopf bifurcation. We have found this axisymmetric Hopf bifurcation for (2.3) 
numerically. Increasing L along this bifurcation branch, we find that the sinusoidal 
pulsations which occur for L near L,, become progressively sharper and steeper and 
take on the character of relaxation oscillations. At another critical value Lc,, a 
period doubling secondary bifurcation is identified. 

The adaptive procedure developed here will be illustrated by a typical case after 
the period doubling secondary bifurcation. Specifically, we consider the case L = 13, 
0 = 0.5, N = 40, and K = 11.7. More physically realistic values of L occur for other 
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values of the parameter cr, N, and K. In Fig. 1, we illustrate the temporal behavior 
of 8 and C at the fixed point r = 27.4 over a time interval slightly greater than one 
period. The sharp spikes of alternating height are apparent. Computing the solution 
during the spikes consumes most of the cost of the computation. 

To see how the spikes relate to the spatial structure of the solution, we exhibit 
in Figs. 2a and b the spatial profiles of 8 and C at the four times indicated in Fig. 1. 
It is apparent that for all of the time points, the solution exhibits very rapid changes 
over a small spatial interval. Note that the concentration profile has a more rapid 
variation than the temperature profile, since L > 1. It is apparent from Figs. 2a and 
b that the solution becomes much sharper at the time when the temporal spikes 
occur. In the limit M+ 00, both 0 and C have discontinuous first derivatives. The 
point of discontinuity is called the flame front, and the reaction term becomes a 
surface delta function on the front, the strength of which was derived in [lo]. The 
analysis in [9] is based on this limit. For A4 large but finite, the reaction term is 
important only in a thin region called the reaction zone. 

In computing the solution with the Chebyshev pseudo-spectral method, inac- 
curate resolution of the region of rapid variation can lead to spurious oscillations 
[6, 131. These oscillations can affect the reaction term and give rise to a variety of 
errors, including computed solutions which appear to be nonperiodic or chaotic. If 
the oscillations become large enough, negative concentrations occur, which lead to 
numerical instability. 

To efficiently compute solutions using the Chebyshev pseudo-spectral method, we 
adaptively transform the coordinate system so that in the new coordinate system 

L= 13.00 
r = 27.4 

I- 
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FIG. 1. Pulsating flame. 8 and C as a function of time at a fixed radial location. 
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L= 13.00 

a 

425 

0.a 

r 

L= 13.00 

b 

I  I  I  I  I  

,  5.0 10.0 15.0 SO.0 25.0 
r 

Time 

Time 
-!I- 

.!?. 
13 . . . . . 

--!A- 

M., 
FIG. 2. (a) Spatial proliles of 8 (temperature) at four dinerent times. (b) Spatial profiles of C 

(concentration) at four different times. 
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the solution appears to vary more gradually. In this way the solution can be 
approximated with a smaller number of collocation points. In addition, it is 
desirable to dynamically add and subtract collocation points, as the resolution 
requirements are more severe when the solution spikes. Our procedure is to choose 
the number of collocation points to maintain a constant error bound. 

These constraints give rise to the need for a good definition and estimate of the 
errors associated with the pseudo-spectral method. In the next two sections, we 
describe the adaptive method in general and then discuss the functionals we have 
developed to monitor the spectral interpolation error. Although this analysis is only 
for the error in approximating a function as a sum of Chebyshev polynomials, the 
numerical examples indicate that the procedure appears to control the total pseudo- 
spectral error in solving the equations of the mathematical model. 

III. ADAPTIVE PROCEDURE 

We consider, for purposes of discussion, the model reaction, diffusion, convection 
equation in one space dimension 

24, = u,, + 24, + R(u), -ldx<l, (3.1) 

where R(u), is a nonlinear function. The initial and boundary conditions are not 
important for the purpose of this discussion. In the Chebyshev pseudo-spectral 
method, the solution to (3.1) is approximated as a finite sum of Chebyshev 
polynomials 

u= i ai Tj(X), (3.2) 
j=O 

where Tj(x) = cos(j cos -’ x) and the coefficients uj are obtained from collocating 
the solution at the points 

(xj=cos (s), j=O, . . . . .J}. 

For a discussion of this method, see [6]. The method differs from finite differen- 
ces in that it is spectrally accurate; i.e., for sufficiently smooth solutions the error 
decays faster than J-’ for any power of r. In particular, for analytic functions the 
error decays exponentially [14]. A precise formulation of this property is discussed 
below. 

It is known that this method can exhibit oscillations when solutions with rapid 
spatial changes, such as those exhibited in Figs. 2a and b, are computed. In order 
to improve the ability of the method to accurately compute such solutions, an 
adaptive procedure was introduced in [l]. 
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In this procedure, we dynamically vary the coordinate system for (3.1). We 
transform (3.1) by the mapping 

where s is the new independent variable. Here q is a given function, and a is an 
unknown parameter vector to be determined. In [l] and in the computations 
presented below, the function q was taken to be 

q(s,o)=ztan-i 
[ 

ai tant(s’- 1) + 1, I 
where 

Q-S $=-* 
azs- 1’ 

a,>O, -1 <az< 1, 

and a = (c(i) c(*). 
The functional form of this mapping is motivated by the desire to map an interior 

region where rapid variation in the solution may be occurring, to a region near the 
boundary (a*) and then to stretch the resulting boundary layer (a,), thus making 
the solution appear more slowly varying. In addition, this functional form has the 
practical advantage of being explicitly invertible. Other choices are possible. These 
choices may affect the efficiency of the overall numerical method but will not affect 
the conclusion that the new functional, introduced below, is more effective in 
estimating the spectral interpolation error than the weighted Sobolev norms. We 
point out that it is entirely possible to use different coordinate systems for different 
dependent variables, using the global expansion (3.2) to interpolate expressions that 
couple different dependent variables. 

To determine a, we suppose that Z,(U) is a functional of the solution and that 
some measure of the error is bounded by Z,(u)/J” for some integer r. Then 
Z,(u(q., a))) is a measure of the error in the coordinate system determined by a. We 
can then minimize the upper bound on the error by choosing a such that 
Z,(u(q, a)) = ?;( ) a is minimized. If E is a desired error level, then J can be 
determined as the smallest integer such that 

s 2 7&)/E. (3.4) 

In this procedure, it is necessary to interpolate the solution to the new colloca- 
tion points xj = q(sj, a), where {sj} are the Chebyshev collocation points (3.3). This 
can be accomplished without loss of spectral accuracy by evaluating the global 
approximation (3.2). From this discussion it is clear that the role of Z,(u) is crucial. 
In [ 1,7], Z,(U) was chosen as the weighted second Sobolev norm 

Mu)= j;, dxw(x)CIu,,12+ IU,I*+ IUI’,]~“, [ 
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where w(x) is the Chebyshev weight function 

w(x) = ( 1 - x2) - 1’2. 

The adaptive procedure is therefore to find a such that 

is minimized. 
The choice of (3.5) is motivated by the estimates obtained in [4], where it is 

shown that if u is smooth, and P,u the Chebyshev interpolant, then the error 
e, = u - P,u satisfies 

for J > 0. Here II I( 0 is. the weighted L, norm, 

and )( 11, is the weighted rth Sobolev norm. We make the following remarks about 
(3.6): 

(a) As is typical in pseudo-spectral methods, (3.6) is a family of error bounds 
and the error seen in practice is the smallest of the right-hand sides of (3.6). Thus, 
any adaptive procedure can only minimize an upper bound on the error. For the 
combustion problems discussed here, we choose r = 2, i.e., (3.5), although when the 
spatial profiles become more smoothly varying, this may overestimate J. 

(b) The error on the left-hand side of (3.6), which is to be bounded, depends 
on the particular coordinate system that is chosen and may not necessarily relate 
to the quality of the computed solution. 

(c) It has been observed that (3.6) does not yield good coordinate systems 
for r= 1 Cl, 71. 

In practice we find that (3.5) is not sufficiently sensitive to variations in the 
behavior of the solution, when compared with the functional described below. The 
use of (3.5) tends to overestimate the number of collocation points J. A discussion 
of a new family of functionals, which appear to better track the spectral 
interpolation error, now follows. 
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IV. THE NEW FUNCTIONAL 

To better understand the behavior of the error in the Chebyshev method, and to 
get a better error functional, we start by considering a smooth function 

k=O 

where co = 2; ck = 1 for k > 0, and its Chebyshev-Galerkin approximation 

J-1 

fJ- ltx) = pJ- Iftx) = c akTk(x). 
k=O 

We are interested in an error estimate that will not depend on the coordinate 
system; otherwise it will be impossible to know whether the new coordinate s is 
really better than the original one. The most natural norm in which to measure the 
error is the maximum norm. Thus we look at the pointwise error 

If(x)-fJ-l(x)l =I c OkTk(x)i. 
k=J 

Consider first the leading term, aJ, in (4.1). In fact, since for k > 0, 

(&? T;)’ = - ;%--, 

we obtain 

aJ= ---$ j; ,  (J1-;;i T’,)‘f(x) dx. 

We then integrate by parts, noting that the boundary terms vanish, to obtain 

or upon defining L = Jm (d/dx), 

aJ= --$j(Ly)Adx. 
J Jr? 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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This formula is a special case of the formula derived in [6] for a general 
Sturm-Liouville problem. We repeat the integration by parts to obtain 

u,=sj(L2*f)Adx, 
jc7 

k = 1, 2, . . . . 
J 

From (4.4), we can bound a, by using the Cauchy-Schwartz inequality 

(a,, <-$[ jfidx]i’2.$[ j-&dx]“‘. 

(4.5) 

(4.6) 

The last factor on the right-hand side of (4.6) is one, by the normalization of T,. 
It is therefore reasonable to take 

instead of (3.5). Similarly, we can define 

and take the minimum over k as a measure for the error. Going back to (4.1), we 
can bound the (Galerkin) spectral L2-projection error in the maximum norm 

Z2Jf)= j' (L2kf)2 
[ -1 -JYyy2dx]"2 

(4.7) 

(4.8) 

- fy., If(x)-fJ-,(x)1< f l4=l~,l+ f I4 . . I=J l=J+ I 
Z*(f) <7+14(f) f py+o + . 

I=/+1 0 (4.9) 

It is possible to more crudely estimate the maximum norm of the error by 

E;x<, If(x)-fJ-l(X)lG f I4 <f,(f) f +,(f);. (4.10) . . I=J I=J 

In practice we determine J from only the first term on the right-hand side of 
(4.9); i.e., we determine J from the formula 

prescribed error = Z2( f )/J*. 

We point out that a l/J2 dependence for the error is asymptotically equivalent 
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to the error associated with second-order finite difference schemes. Equation (4.8) 
defines a family of error bounds of the form 

Ia,1 < IZt(f) 
J 

(k = 1, 2, . ..) (4.11) 

which are valid iff has 2k continuous derivatives. These can be extended to bounds 
on the maximum norm of the spectral interpolation error similar to (4.9) and 
(4.10). If f is infinitely differentiable, the actual error is bounded by the inlimum 
(over k) of these bounds. Clearly as J --) 00 (small prescribed error), the infimum 
occurs for values of k that + cc. At present we have only implemented the func- 
tional I, and, as a result, the value of J obtained may be greater than that necessary 
to obtain the required accuracy. There is no apparent limitation in implementing 
the higher order functionals. 

Based on the above discussion, the comparison of this method with finite dif- 
ferences depends on several factors including the size of the functionals IZk(f), the 
prescribed error level, and the computational aspects of implementing a local 
moving mesh strategy. For the problems presented below, we find that a relatively 
small prescribed error level is required in order to obtain the correct periodic or 
doubly periodic behavior. The procedure to adjust the number of collocation points 
is very simple. Interpolation to the new points can be accomplished using the global 
Chebyshev expansion. 

The numerical results presented below demonstrate that (4.7) is more effective in 
practice than (3.5), at least for the problems considered here. We believe that the 
following reasons may account for this fact: 

(a) We find that there generally are very small oscillations near the boun- 
daries even though the solution is smooth there. When the functional (3.5) is 
evaluated, using the approximate solution, these oscillations are amplified in the 
integral by the weight function w(x). The resulting minimization will attempt to 
find a coordinate system which expands the boundary regions and thus compresses 
the interior front-like region near the reaction zone. In principle this could be par- 
tially ameliorated by using the exact solution in evaluating the functional, but the 
exact solution is not known. Even for the exact solution there are small waves 
which propagate toward the boundaries. The functional (4.7) gives less weight to 
the boundaries than (3.5). 

(b) The functional (4.7) is an upper bound for each of the individual 
Chebyshev expansion COefiCientS ak. The higher order terms tend to give rise to 
small oscillations which initially may not contribute to the maximum norm of the 
error but which can be amplified by the exponentially nonlinear reaction term. The 
estimate (3.5) does not directly bound the higher order expansion coefftcients. 

(c) The values of (4.7) tend to be much smaller than (3.5) and therefore (4.7) 
is a tighter upper bound on the maximum norm of the error. This is partially due 
to comment (a) above. 
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We point out that the same analysis, though integrating by parts only once, 
shows that K ’ b,12d~ - s (L.f-12 & 

J -,,/Gi ’ 

where K is some constant. Thus even the lowest order error bounded does not 
reduce to the weighted Sobolev norm. This may explain the lack of success of using 
the weighted Sobolev norm of the first derivative in [ 1, 71. 

Finally, (4.9) can be extended to bound the spectral interpolation error based on 
collocation, with the loss of at most a factor of log J. This is because the right-hand 
side of (4.8) is also an upper bound for the best polynomial approximation to f in 
the sup norm. It is known [ 111 that the maximum norm of the error of the inter- 
polant off, at the points (3.3) will differ from the error obtained from the minimax 
polynomial, by a factor that grows at most logarithmically. 

V. NUMERICAL RESULTS 

In this section we present some numerical results illustrating the effectiveness of 
(4.7) in tracking the spectral interpolation error. We consider the model described 
by (2.1) and the parameters described in Section 2. In our adaptive procedure we 
consider the current coordinate system described by a = a’. The solution is updated 
in time and Z,(U) is computed at every time step. A search for a new coordinate 
system is triggered whenever 

Z*(u) < c 
Imin ” 

or 

(5.la) 

(5.lb) 

where Zmin is the value of Z2(u) at the previous time that a coordinate system was 
found. We observe that (5.la) may indicate that the number of collocation points 
should be reduced in order to more efficiently compute the solution, whereas (5.lb) 
may indicate that more collocation points are required to achieve the desired 
accuracy. Both (5.la) and (5.lb) indicate that the solution has changed sulliciently 
from the previous time a coordinate system was found, so that a new minimization 
should be attempted. For the computations used below, we took ci = 0.3 and 
c2 = 1.7. At present only one coordinate system is used for both variables. The func- 
tion actually used in the evaluation of Z2(u) is a linear combination of 8 and C. For 
the computations of pulsating flames presented below, we use u = 0.38 + 0.7C. In 
addition, we specify a maximum number of collocation points, J,,,, which is to be 
used in case the program cannot meet the specified error. 
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In Figs. 3a and b, we display the temporal behavior of 8 and C for the same 
computation as shown in Fig. 1. In these figures, we also plot the number of 
collocation points as t varies. In Fig. 3a, the choice of a is obtained from (4.7), 
while in Fig. 3b the choice of a was obtained from (3.5). The value of E in each case 
was 0.0025. 

It is apparent that the use of (4.7) is more sensitive to the behavior of the solu- 
tion than the use of (3.5) and permits a more rapid reduction in the number of 
collocation points near the spike, where the maximum cost of the computation 
occurs. In fact, the computation for Fig. 3a required roughly 30% of the time of the 
computation for Fig. 3b. 

In Figs. 4a and b, we plot the spatial profiles for 8 and C at the initial spike 
(t N 2.9). In each case we took the spatial profile at the time that the functional was 
largest. The major source of spatial errors is the oscillations in the profiles, 
primarily in the concentration profile. We observe that the solution in Fig. 4b 
(using (3.5)) is slightly more oscillatory than the solution in Fig. 4a (using (4.7)), 
although both solutions are acceptable. The effect of increasing the error tolerance 
is shown in Figs. 5a (using (4.7)) and b (using (3.5)). In this case we set E = 0.0035. 
It can be seen that Fig. 5a is more accurate. In this case the maximum number of 
collocation points for Fig. 5a was 321 while in Fig. 5b the error level was not met 
with 361 points (the maximum number of points allowed in this run of the 
program). The ratio of the running time was 5 to 1. 

As another example, we reduced the maximum allowed number of collocation 
points to 241. Spatial profiles using (4.7) (Fig. 6a) and (3.5) (Fig. 6b) are illustrated. 
Although both solutions are degraded, it is apparent that Fig. 6a is considerably 
more accurate than Fig. 6b. 

We next discuss the application of the method described above to the computa- 
tion of stationary cellular flames. We consider (2.1), allowing both radial and 
angular perturbations, for values of L < 1. We consider L < L,, so that the axisym- 
metric solution to (2.1) is unstable to angular perturbations and arbitrary initial 
data sufficiently close to the axisymmetric solution will evolve to a stable stationary 
cellular solution. These cellular flames, sometimes called wrinkled flames, are 
characterized by the appearance of pointed crests and troughs in the reaction zone. 
The crests point in the direction of the burned products of combustion and are 
cooler than the troughs. This behavior, described analytically by the interaction 
between the fundamental and its first harmonic [9], is also observed experimentally 
[8] and is present in our computations at finite activation energy as well [2, 33. 

In our computations, we employ a Fourier pseudo-spectral method in the 
angular direction 4 and a Chebyshev pseudo-spectral method in the radial direction 
r. At present we employ a transformation in the radial direction with a independent 
of 4, and therefore we require sufficient radial resolution to resolve the reaction 
zone in each angular direction. The stationary state is achieved by integrating in 
time until the solution equilibrates. The convergence is monitored by the maximum 
of l&!$/Jtl, lX/atl, over all collocation points. We require this .maximum to be less 
than 10e7. The temporal integration uses the backward Euler scheme with operator 
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K= 14.00 
L= 13.00 i&wlx?L 
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FIG. 4. Spatial profiles. (a) 8 and C at the time when the objective functional is largest. J and a were 
obtained from minimizing (4.7) and E = 0.0025. (b) 8 and C at the time when the objective functional 
is largest. J and a were obtained from minimizing (3.5) and E = 0.0025. 
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obtained from minimizing (4.7) and E = 0.0035. (b) 8 and C at the time when the objective functional 
is largest. J and a were obtained from minimizing (3.5) and E = 0.0035. 
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FIG. 7. Angular variation of B and C for a cellular flame: (a) I =9.34; (b) r= 10.15. (c) Mean, 
fundamental, and harmonic coeficients for a cellular flame, as a function of r. 
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FIG. 7-Continued. 

splitting. The reaction terms are treated explicitly while all other terms are treated 
implicitly [2]. 

We illustrate our method with a computation of a three cell. The parameter 
values employed are K = 11.0, L = 0.44, N= 20, and cr = 0.615. We first describe the 
behavior of the solution. Figures 7a and b illustrate the temperature and concentra- 
tion, as a function of 4, at two different radial positions. We observe that for 
r = 9.34, the temperature exhibits a large, nearly sinusoidal oscillation with few 
visible higher frequencies. For r = 10.15 the angular variation is reduced, but the 
temperature exhibits crests and troughs. This is due to the interaction of the 
fundamental and its first harmonic; the other harmonics are very small. This effect 
isillustrated in Fig. 7c by plotting the mean, fundamental, and first harmonic as a 
function of r. 

The data in Fig. 7 were obtained by using 101 points in r and 128 collocation 
points in 4. This solution has been validated by further grid refinements, and for 
this number of radial collocation points, the solution does not depend upon the 
specific functional used to determine the coordinate system. To illustrate the effec- 
tiveness of (4.7), we consider a cruder approximation, using a reduced number of 
collocation points. 

We compare the line grid solution with computations using (4.7) and (3.5) with 
49 collocation points. The objective function is obtained by averaging the functional 
over all angles. In Fig. 8a we plot the mean value of the solution, comparing the 
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FIG. 8. (a) Mean of 8 as a function of r. Coarse grid solution obtained from minimizing (4.7). 
(b) Fundamental and harmonic coe&ients of 8 as a function of r. Coarse grid solution obtained from 
minimizing (4.7). 
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line grid solution with the coarse grid solution obtained by using (4.7). In Fig. 8b 
we do the same for the fundamental and its first harmonic. In Fig. 9a and b we pre- 
sent the same data, except that the coarse grid solution is obtained by using (3.5). 

It is apparent from the figures that the coarse grid solutions are considerably less 
accurate on the angular variations than on the mean. Although the first harmonic 
is small relative to the mean and the fundamental, we consider it an important part 
of the computation, as the pointed crests and troughs in the reaction zone are 
features predicted by analysis and by our computations and are observed 
experimentally. It is apparent from the figures that by using (4.7), we obtain a more 
accurate solution than by using (3.5). A more detailed numerical study of cellular 
flames is presented in [2, 31. 

VI. CONCLUSION 

We have presented a functional that appears to provide a relatively sharp upper 
bound for the spectral interpolation error, in the maximum norm, for the types of 
solutions occurring in typical combustion problems. The functional is derived 
directly from the Chebyshev expansion of a smooth function; it is the first member 
of a family of functionals, depending upon successively higher derivatives, which 
bound the spectral interpolation error. We have employed the functional to both 
reduce the error for a fixed number of collocation points and to dynamically vary 
the number of collocation points, depending on the magnitude of the functional. 
The adaptive procedure based on this functional is shown to be more effective than 
the procedure based on the weighted Sobolev norm, in computations of both 
pulsating and cellular flames. 
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